THE DOW CHEMICAL COMPANY encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. IDENTIFICATION

Product name: FROTH-PAK™ 620 AF HFC ISO Spray Foam Sealant

Recommended use of the chemical and restrictions on use
Identified uses: Component(s) for the manufacture of urethane polymers.

2. HAZARDS IDENTIFICATION

Hazard classification
This material is hazardous under the criteria of the Federal OSHA Hazard Communication Standard 29CFR 1910.1200.
Acute toxicity - Category 4 - Inhalation
Skin irritation - Category 2
Eye irritation - Category 2B
Respiratory sensitisation - Category 1
Skin sensitisation - Category 1
Carcinogenicity - Category 2
Specific target organ toxicity - single exposure - Category 3
Specific target organ toxicity - repeated exposure - Category 2 - Inhalation

Label elements
Hazard pictograms
Signal word: **DANGER!**

Hazard
Causes skin and eye irritation.
May cause an allergic skin reaction.
Harmful if inhaled.
May cause allergy or asthma symptoms or breathing difficulties if inhaled.
May cause respiratory irritation.
Suspected of causing cancer.
May cause damage to organs (Respiratory system) through prolonged or repeated exposure if inhaled.

Precautionary statements

Prevention
Obtain special instructions before use.
Do not handle until all safety precautions have been read and understood.
Do not breathe dust/ fume/ gas/ mist/ vapours/ spray.
Wash skin thoroughly after handling.
Use only outdoors or in a well-ventilated area.
Contaminated work clothing should not be allowed out of the workplace.
Wear protective gloves.
Use personal protective equipment as required.
In case of inadequate ventilation wear respiratory protection.

Response
IF ON SKIN: Wash with plenty of soap and water.
IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER or doctor/ physician if you feel unwell.
IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
If exposed or concerned: Get medical advice/ attention.
If skin irritation or rash occurs: Get medical advice/ attention.
If eye irritation persists: Get medical advice/ attention.
Take off contaminated clothing and wash before reuse.

Storage
Store in a well-ventilated place. Keep container tightly closed.
Store locked up.

Disposal
Dispose of contents/ container to an approved waste disposal plant.

Other hazards
no data available
3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical nature: Construction and composite applications
This product is a mixture.

<table>
<thead>
<tr>
<th>Component</th>
<th>CASRN</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylmethane Diisocyanate, isomers and homologues</td>
<td>9016-87-9</td>
<td>>= 60.0 - <= 100.0 %</td>
</tr>
<tr>
<td>4,4’-Methylenediphenyl diisocyanate</td>
<td>101-68-8</td>
<td>30.0 - 60.0 %</td>
</tr>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>811-97-2</td>
<td>>= 5.0 - <= 10.0 %</td>
</tr>
</tbody>
</table>

Note
Note: CAS 101-68-8 is an MDI isomer that is part of CAS 9016-87-9.

4. FIRST AID MEASURES

Description of first aid measures
General advice: First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.

Skin contact: Remove material from skin immediately by washing with soap and plenty of water. Remove contaminated clothing and shoes while washing. Seek medical attention if irritation persists. Wash clothing before reuse. An MDI skin decontamination study demonstrated that cleaning very soon after exposure is important, and that a polyglycol-based skin cleanser or corn oil may be more effective than soap and water. Discard items which cannot be decontaminated, including leather articles such as shoes, belts and watchbands. Suitable emergency safety shower facility should be available in work area.

Eye contact: Immediately flush eyes with water; remove contact lenses, if present, after the first 5 minutes, then continue flushing eyes for at least 15 minutes. Obtain medical attention without delay, preferably from an ophthalmologist. Suitable emergency eye wash facility should be immediately available.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Most important symptoms and effects, both acute and delayed: Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), any additional important symptoms and effects are described in Section 11: Toxicology Information.
Indication of any immediate medical attention and special treatment needed
Notes to physician: Excessive exposure may aggravate preexisting asthma and other respiratory disorders (e.g., emphysema, bronchitis, reactive airways dysfunction syndrome). Maintain adequate ventilation and oxygenation of the patient. May cause respiratory sensitization or asthma-like symptoms. Bronchodilators, expectorants and antitussives may be of help. Treat bronchospasm with inhaled beta2 agonist and oral or parenteral corticosteroids. Respiratory symptoms, including pulmonary edema, may be delayed. Persons receiving significant exposure should be observed 24-48 hours for signs of respiratory distress. If you are sensitized to diisocyanates, consult your physician regarding working with other respiratory irritants or sensitizers. Exposure may increase "myocardial irritability". Do not administer sympathomimetic drugs such as epinephrine unless absolutely necessary. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

5. FIREFIGHTING MEASURES

Suitable extinguishing media: Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Unsuitable extinguishing media: no data available

Special hazards arising from the substance or mixture
Hazardous combustion products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Nitrogen oxides. Isocyanates. Hydrogen fluoride. Hydrogen cyanide. Carbon monoxide. Carbon dioxide.

Unusual Fire and Explosion Hazards: Product reacts with water. Reaction may produce heat and/or gases. This reaction may be violent. Container may rupture from gas generation in a fire situation. Vaporizes quickly at room temperature. Vapors are heavier than air and may travel a long distance and accumulate in low lying areas. Dense smoke is emitted when burned without sufficient oxygen.

Advice for firefighters
Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Water is not recommended, but may be applied in large quantities as a fine spray when other extinguishing agents are not available. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting safety device or discoloration of the container. Do not use direct water stream. May spread fire. Move container from fire area if this is possible without hazard. Use water spray to cool fire-exposed containers and fire-affected zone until fire is out.

Special protective equipment for firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.
6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures: Isolate area. Keep unnecessary and unprotected personnel from entering the area. Keep personnel out of low areas. Keep personnel out of confined or poorly ventilated areas. Keep upwind of spill. Spilled material may cause a slipping hazard. Ventilate area of leak or spill. Confined space entry procedures must be followed before entering the area. If available, use foam to smother or suppress. Refer to section 7, Handling, for additional precautionary measures. See Section 10 for more specific information. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

Methods and materials for containment and cleaning up: Contain spilled material if possible. Absorb with materials such as: Dirt. Vermiculite. Sand. Clay. Do NOT use absorbent materials such as: Cement powder (Note: may generate heat). Collect in suitable and properly labeled open containers. Do not place in sealed containers. Suitable containers include: Metal drums. Plastic drums. Polylined fiber pacs. Wash the spill site with large quantities of water. Attempt to neutralize by adding suitable decontaminant solution: Formulation 1: sodium carbonate 5 - 10%; liquid detergent 0.2 - 2%; water to make up to 100%, OR Formulation 2: concentrated ammonia solution 3 - 8%; liquid detergent 0.2 - 2%; water to make up to 100%. If ammonia is used, use good ventilation to prevent vapor exposure. Contact your supplier for clean-up assistance. See Section 13, Disposal Considerations, for additional information.

7. HANDLING AND STORAGE

Precautions for safe handling: Avoid contact with eyes, skin, and clothing. Avoid prolonged or repeated contact with skin. Avoid breathing vapor. Use with adequate ventilation. Wash thoroughly after handling. Keep container tightly closed. Do not enter confined spaces unless adequately ventilated. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION. Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

Conditions for safe storage: Store in a dry place. Protect from atmospheric moisture. Do not store product contaminated with water to prevent potential hazardous reaction. See Section 10 for more specific information. Additional storage and handling information on this product may be obtained by calling your sales or customer service contact.

Storage stability
Storage temperature: 15 - 27 °C (59 - 81 °F)
Storage Period: 6 Month

8. EXPOSURE CONTROLS/PERSOANL PROTECTION

Control parameters
Exposure limits are listed below, if they exist.

| Component | Regulation | Type of listing | Value/Notation |
Exposure controls

Engineering controls: Use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations. Provide general and/or local exhaust ventilation to control airborne levels below the exposure guidelines. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. The odor and irritancy of this material are inadequate to warn of excessive exposure. Lethal concentrations may exist in areas with poor ventilation.

Individual protection measures

Eye/face protection: Use chemical goggles.

Skin protection

Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Butyl rubber. Polyethylene. Chlorinated polyethylene. Ethyl vinyl alcohol laminate (“EVAL”). Examples of acceptable glove barrier materials include: Viton. Neoprene. Polyvinyl chloride (“PVC” or “vinyl”). Nitrile/butadiene rubber (“nitrile” or “NBR”). **NOTICE:** The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Other protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Respiratory protection: Atmospheric levels should be maintained below the exposure guideline. When atmospheric levels may exceed the exposure guideline, use an approved air-purifying respirator equipped with an organic vapor sorbent and a particle filter. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure air-supplying respirator (air line or self-contained breathing apparatus). For emergency response or for situations where the atmospheric level is unknown, use an approved positive-pressure self-contained breathing apparatus or positive-pressure air line with auxiliary self-contained air supply. In confined or poorly ventilated areas, use an approved self-contained breathing apparatus or positive pressure air line with auxiliary self-contained air supply.

The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter.

9. PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Physical state</th>
<th>liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Brown</td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>Musty</td>
<td></td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>No test data available</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>
Melting point/range: No test data available
Freezing point: No test data available
Boiling point (760 mmHg): No test data available
Flash point: closed cup Not applicable, Gas
Evaporation Rate (Butyl Acetate = 1): No test data available
Flammability (solid, gas): No
Lower explosion limit: No test data available
Upper explosion limit: No test data available
Vapor Pressure: 225 lb/in² at 54 °C (129 °F) Container is under pressure.
Relative Vapor Density (air = 1): No test data available
Water solubility: insoluble, reacts, evolution of CO2
Partition coefficient: n-octanol/water: no data available
Auto-ignition temperature: No test data available
Decomposition temperature: No test data available
Kinematic Viscosity: No test data available
Explosive properties: Not explosive
Oxidizing properties: No
Molecular weight: No test data available

NOTE: The physical data presented above are typical values and should not be construed as a specification.

10. STABILITY AND REACTIVITY

Reactivity: no data available

Chemical stability: Stable under recommended storage conditions. See Storage, Section 7.

Possibility of hazardous reactions: Can occur.

Conditions to avoid: Elevated temperatures can cause container to vent and/or rupture. Exposure to elevated temperatures can cause product to decompose. Generation of gas during decomposition can cause pressure in closed systems. Pressure build-up can be rapid. Avoid moisture. Material reacts slowly with water, releasing carbon dioxide which can cause pressure buildup and rupture of closed containers. Elevated temperatures accelerate this reaction.

Incompatible materials: Avoid contact with: Acids. Alcohols. Amines. Ammonia. Bases. Metal compounds. Strong oxidizers. Diisocyanates react with many materials and the rate of reaction increases with temperature as well as increased contact; these reactions can become violent. Contact is increased by stirring or if the other material mixes with the diisocyanate. Diisocyanates are not soluble in water and sink to the bottom, but react slowly at the interface. The reaction forms carbon...
dioxide gas and a layer of solid polyurea. Reaction with water will generate carbon dioxide and heat. Avoid unintended contact with polyols. The reaction of polyols and isocyanates generate heat.

Hazardous decomposition products: Decomposition products depend upon temperature, air supply and the presence of other materials. Toxic gases are released during decomposition.

11. TOXICOLOGICAL INFORMATION

Toxicological information on this product or its components appear in this section when such data is available.

Acute toxicity

Acute oral toxicity
Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. Observations in animals include: Gastrointestinal irritation.

As product: Single dose oral LD50 has not been determined.
LD50, Rat, > 2,000 mg/kg Estimated.

Acute dermal toxicity
Prolonged skin contact is unlikely to result in absorption of harmful amounts.

As product: The dermal LD50 has not been determined.
LD50, Rabbit, > 2,000 mg/kg Estimated.

Acute inhalation toxicity
In confined or poorly ventilated areas, vapor can easily accumulate and can cause unconsciousness and death due to displacement of oxygen. Excessive exposure may cause irritation to upper respiratory tract (nose and throat) and lungs. May cause pulmonary edema (fluid in the lungs.) Effects may be delayed. Decreased lung function has been associated with overexposure to isocyanates. Excessive exposure may increase sensitivity to epinephrine and increase myocardial irritability (irregular heartbeats). May cause central nervous system effects. Symptoms of excessive exposure may be anesthetic or narcotic effects; dizziness and drowsiness may be observed.

As product: The LC50 has not been determined.

Skin corrosion/irritation
Prolonged contact may cause skin irritation with local redness. May stain skin.

Serious eye damage/eye irritation
May cause moderate eye irritation. May cause slight temporary corneal injury.

Sensitization
Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization.
May cause allergic respiratory reaction. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening.

Specific Target Organ Systemic Toxicity (Single Exposure)
May cause respiratory irritation.
Route of Exposure: Inhalation

Specific Target Organ Systemic Toxicity (Repeated Exposure)
Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols.

Carcinogenicity
Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m3) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI.

Teratogenicity
In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. Contains component(s) which did not cause birth defects in animals; other fetal effects occurred only at doses toxic to the mother.

Reproductive toxicity
No relevant data found.

Mutagenicity
Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative. Animal mutagenicity studies were predominantly negative.

Aspiration Hazard
Based on physical properties, not likely to be an aspiration hazard.

COMPONENTS INFLUENCING TOXICOLOGY:

Diphenylmethane Diisocyanate, isomers and homologues

Acute inhalation toxicity

- LC50, Rat, 4 Hour, dust/mist, 0.49 mg/l

For similar material(s): 2,4'-Diphenylmethane diisocyanate (CAS 5873-54-1). LC50, Rat, 4 Hour, Aerosol, 0.31 mg/l

For similar material(s): 4,4'-Methylenebisphenyl diisocyanate (CAS 101-68-8). LC50, Rat, 1 Hour, Aerosol, 2.24 mg/l

4,4'-Methylenediphenyl diisocyanate

Acute inhalation toxicity

- LC50, Rat, 1 Hour, dust/mist, 2.24 mg/l

1,1,1,2-Tetrafluoroethane

Acute inhalation toxicity
LC50, Rat, 4 Hour, vapour, > 1,500 mg/l

12. ECOLOGICAL INFORMATION

Ecotoxicological information on this product or its components appear in this section when such data is available.

Toxicity

Diphenylmethane Diisocyanate, isomers and homologues

Acute toxicity to fish
The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species.
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).
Based on information for a similar material:
LC50, Danio rerio (zebra fish), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent

Acute toxicity to aquatic invertebrates
Based on information for a similar material:
EC50, Daphnia magna (Water flea), static test, 24 Hour, > 1,000 mg/l, OECD Test Guideline 202 or Equivalent

Acute toxicity to algae/aquatic plants
Based on information for a similar material:
NOEC, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate inhibition, 1,640 mg/l, OECD Test Guideline 201 or Equivalent

Toxicity to bacteria
Based on information for a similar material:
EC50, activated sludge, static test, 3 Hour, Respiration rates, > 100 mg/l

Toxicity to soil-dwelling organisms
EC50, Eisenia fetida (earthworms), Based on information for a similar material:, 14 d, > 1,000 mg/kg

Toxicity to terrestrial plants
EC50, Avena sativa (oats), Growth inhibition, 1,000 mg/l
EC50, Lactuca sativa (lettuce), Growth inhibition, 1,000 mg/l

4,4’-Methylene diphenyl diisocyanate

Acute toxicity to fish
The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species.
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).
Based on information for a similar material:
LC50, Danio rerio (zebra fish), static test, 96 Hour, > 1,000 mg/l, OECD Test Guideline 203 or Equivalent
Acute toxicity to aquatic invertebrates
Based on information for a similar material:
EC50, Daphnia magna (Water flea), static test, 24 Hour, > 1,000 mg/l, OECD Test Guideline 202 or Equivalent

Acute toxicity to algae/aquatic plants
Based on information for a similar material:
NOEC, Desmodesmus subspicatus (green algae), static test, 72 Hour, Growth rate inhibition, 1,640 mg/l, OECD Test Guideline 201 or Equivalent

Toxicity to bacteria
Based on information for a similar material:
EC50, activated sludge, static test, 3 Hour, Respiration rates., > 100 mg/l

Toxicity to soil-dwelling organisms
EC50, Eisenia fetida (earthworms), Based on information for a similar material.; 14 d, > 1,000 mg/kg

Toxicity to terrestrial plants
EC50, Avena sativa (oats), Growth inhibition, 1,000 mg/l
EC50, Lactuca sativa (lettuce), Growth inhibition, 1,000 mg/l

1,1,1,2-Tetrafluoroethane

Acute toxicity to fish
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).
LC50, Oncorhynchus mykiss (rainbow trout), semi-static test, 96 Hour, 450 mg/l

Acute toxicity to aquatic invertebrates
EC50, Daphnia magna (Water flea), 48 Hour, 980 mg/l

Toxicity to bacteria
EC50, Pseudomonas putida, static test, 6 Hour, Growth inhibition, > 730 mg/l

Persistence and degradability

Diphenylmethane Diisocyanate, isomers and homologues

Biodegradability: In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates. 10-day Window: Not applicable

Biodegradation: 0 %
Exposure time: 28 d
Method: OECD Test Guideline 302C or Equivalent

4,4’-Methylene diphenyl diisocyanate

Biodegradability: In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates. 10-day Window: Not applicable
Biodegradation: 0 %
Exposure time: 28 d
Method: OECD Test Guideline 302C or Equivalent

1,1,1,2-Tetrafluoroethane
Biodegradability: Material is expected to biodegrade very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.
Exposure time: 28 d
Biodegradation: 4 %
Method: OECD Test Guideline 301D or Equivalent

Theoretical Oxygen Demand: 0.47 mg/mg

Photodegradation
Test Type: Half-life (indirect photolysis)
Sensitizer: OH radicals
Atmospheric half-life: 1,700 d
Method: Estimated.

Bioaccumulative potential

Diphenylmethane Diisocyanate, isomers and homologues
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Reacts with water. In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.
Biocaccumulation factor (BCF): 92 Cyprinus carpio (Carp) 28 d

4,4’-Methylenediphenyl diisocyanate
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Reacts with water. In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.
Biocaccumulation factor (BCF): 92 Cyprinus carpio (Carp) 28 d

1,1,1,2-Tetrafluoroethane
Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Mobility in soil

Diphenylmethane Diisocyanate, isomers and homologues
In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

4,4’-Methylenediphenyl diisocyanate
In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

1,1,1,2-Tetrafluoroethane
Potential for mobility in soil is high (Koc between 50 and 150).
Partition coefficient(Koc): 97 Estimated.
13. DISPOSAL CONSIDERATIONS

Disposal methods: DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Incinerator or other thermal destruction device. As a service to its customers, Dow can provide names of information resources to help identify waste management companies and other facilities which recycle, reprocess or manage chemicals or plastics, and that manage used drums. Telephone Dow's Customer Information Group at 1-800-258-2436 or 1-989-832-1556 (U.S.), or 1-800-331-6451 (Canada) for further details.

14. TRANSPORT INFORMATION

DOT

<table>
<thead>
<tr>
<th>Proper shipping name</th>
<th>Chemical under pressure, n.o.s.(FLUORINATED HYDROCARBONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN number</td>
<td>UN 3500</td>
</tr>
<tr>
<td>Class</td>
<td>2.2</td>
</tr>
<tr>
<td>Packing group</td>
<td></td>
</tr>
<tr>
<td>Reportable Quantity</td>
<td>MDI</td>
</tr>
</tbody>
</table>

Classification for SEA transport (IMO-IMDG):

<table>
<thead>
<tr>
<th>Proper shipping name</th>
<th>CHEMICAL UNDER PRESSURE, N.O.S.(FLUORINATED HYDROCARBONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN number</td>
<td>UN 3500</td>
</tr>
<tr>
<td>Class</td>
<td>2.2</td>
</tr>
<tr>
<td>Packing group</td>
<td></td>
</tr>
<tr>
<td>Marine pollutant</td>
<td>No</td>
</tr>
<tr>
<td>Transport in bulk</td>
<td>Consult IMO regulations before transporting ocean bulk</td>
</tr>
<tr>
<td>according to Annex I or II of MARPOL 73/78 and the IBC or IGC Code</td>
<td></td>
</tr>
</tbody>
</table>

Classification for AIR transport (IATA/ICAO):

<table>
<thead>
<tr>
<th>Proper shipping name</th>
<th>Chemical under pressure, n.o.s.(FLUORINATED HYDROCARBONS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN number</td>
<td>UN 3500</td>
</tr>
<tr>
<td>Class</td>
<td>2.2</td>
</tr>
<tr>
<td>Packing group</td>
<td></td>
</tr>
</tbody>
</table>

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Transportation classifications may vary by container.
volume and may be influenced by regional or country variations in regulations. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. REGULATORY INFORMATION

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312
Acute Health Hazard
Chronic Health Hazard
Sudden Release of Pressure Hazard
Reactivity Hazard

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313
This product contains the following substances which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and which are listed in 40 CFR 372.

Components
4,4'-Methylene diphenyl diisocyanate
Diphenylmethane Diisocyanate, isomers and homologues

Components
CASRN
4,4'-Methylene diphenyl diisocyanate 101-68-8
Diphenylmethane Diisocyanate, isomers and homologues 9016-87-9

Pennsylvania Worker and Community Right-To-Know Act:
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Components
CASRN
Diphenylmethane Diisocyanate, isomers and homologues 9016-87-9
4,4'-Methylene diphenyl diisocyanate 101-68-8

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)
This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

United States TSCA Inventory (TSCA)
All components of this product are in compliance with the inventory listing requirements of the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory.
16. OTHER INFORMATION

Revision
Identification Number: 101194148 / A001 / Issue Date: 04/10/2015 / Version: 7.0
Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend

<table>
<thead>
<tr>
<th>ACGIH</th>
<th>USA. ACGIH Threshold Limit Values (TLV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Ceiling</td>
</tr>
<tr>
<td>OSHA Z-1</td>
<td>USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants</td>
</tr>
<tr>
<td>TWA</td>
<td>8-hour, time-weighted average</td>
</tr>
<tr>
<td>US WEEL</td>
<td>USA. Workplace Environmental Exposure Levels (WEEL)</td>
</tr>
</tbody>
</table>

Information Source and References
This SDS is prepared by Product Regulatory Services and Hazard Communications Groups from information supplied by internal references within our company.

THE DOW CHEMICAL COMPANY urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.