NOTICE

The Material Safety Data Sheet information for the two component FROTH-PAK(TM) 2.25SR PU Spray Foam System is contained in two separate datasheets; one for the isocyanate and one for the polyol. When printing or filing, please be sure to include both documents.
The Dow Chemical Company encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name: POLYURETHANE FOAM SYSTEM - ISOCYANATE

COMPANY IDENTIFICATION
The Dow Chemical Company
2030 Willard H. Dow Center
Midland, MI 48674
USA

Customer Information Number: 800-258-2436

EMERGENCY TELEPHONE NUMBER
24-Hour Emergency Contact: 989-636-4400
Local Emergency Contact: 989-636-4400

2. Hazards Identification

Emergency Overview
Color: Brown
Physical State: Liquid
Odor: Musty

Hazards of product:

WARNING! May cause eye irritation. May cause skin irritation. May cause allergic skin reaction. May cause allergic respiratory reaction. Vapor reduces oxygen available for breathing. May cause central nervous system effects. Keep upwind of spill. May cause anesthetic effects. May cause respiratory tract irritation. May cause lung injury. May react with water. Stay out of low areas. Material reacts slowly with water, releasing carbon dioxide which can cause pressure buildup and rupture of closed containers. Elevated temperatures accelerate this reaction. Toxic fumes may be released in fire situations. Contents under pressure. Avoid temperatures above 41 °C (106 °F). Avoid temperatures below 20 °C (68 °F).
OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Potential Health Effects

Eye Contact: May cause moderate eye irritation. May cause slight temporary corneal injury.

Skin Contact: Prolonged contact may cause skin irritation with local redness. May stain skin.

Skin Absorption: Prolonged skin contact is unlikely to result in absorption of harmful amounts.

Skin Sensitization: Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization.

Inhalation: In confined or poorly ventilated areas, vapor can easily accumulate and can cause unconsciousness and death due to displacement of oxygen. Excessive exposure may cause irritation to upper respiratory tract (nose and throat) and lungs. May cause pulmonary edema (fluid in the lungs.) Effects may be delayed. Decreased lung function has been associated with overexposure to isocyanates. Excessive exposure may increase sensitivity to epinephrine and increase myocardial irritability (irregular heartbeats). May cause central nervous system effects. Symptoms of excessive exposure may be anesthetic or narcotic effects; dizziness and drowsiness may be observed.

Respiratory Sensitization: May cause allergic respiratory response. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening.

Ingestion: Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury. Observations in animals include: Gastrointestinal irritation.

Effects of Repeated Exposure: Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols.

Cancer Information: Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m3) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI.

Birth Defects/Developmental Effects: In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. Based on information for component(s): 1,1,1,2-Tetrafluoroethane. Has been toxic to the fetus in lab animals at doses toxic to the mother.

3. Composition Information

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylmethane Diisocyanate, isomers and homologues</td>
<td>9016-87-9</td>
<td>>= 60.0 - <= 100.0 %</td>
</tr>
<tr>
<td>4,4’-Methylene diphenyl diisocyanate</td>
<td>101-68-8</td>
<td>>= 30.0 - <= 60.0 %</td>
</tr>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>811-97-2</td>
<td>>= 5.0 - <= 10.0 %</td>
</tr>
</tbody>
</table>
4. First-aid measures

Eye Contact: Immediately flush eyes with water; remove contact lenses, if present, after the first 5 minutes, then continue flushing eyes for at least 15 minutes. Obtain medical attention without delay, preferably from an ophthalmologist.

Skin Contact: Remove material from skin immediately by washing with soap and plenty of water. Remove contaminated clothing and shoes while washing. Seek medical attention if irritation persists. Wash clothing before reuse. An MDI skin decontamination study demonstrated that cleaning very soon after exposure is important, and that a polyglycol-based skin cleanser or corn oil may be more effective than soap and water. Discard items which cannot be decontaminated, including leather articles such as shoes, belts and watchbands.

Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Notes to Physician: Maintain adequate ventilation and oxygenation of the patient. May cause respiratory sensitization or asthma-like symptoms. Bronchodilators, expectorants and antitussives may be of help. Exposure may increase "myocardial irritability". Do not administer sympathomimetic drugs such as epinephrine unless absolutely necessary. Respiratory symptoms, including pulmonary edema, may be delayed. Persons receiving significant exposure should be observed 24-48 hours for signs of respiratory distress. If you are sensitized to disocyanates, consult your physician regarding working with other respiratory irritants or sensitizers. No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

Medical Conditions Aggravated by Exposure: Excessive exposure may aggravate preexisting asthma and other respiratory disorders (e.g. emphysema, bronchitis, reactive airways dysfunction syndrome).

5. Fire Fighting Measures

Extinguishing Media: Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Stay upwind. Keep out of low areas where gases (fumes) can accumulate. Water is not recommended, but may be applied in large quantities as a fine spray when other extinguishing agents are not available. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting safety device or discoloration of the container. Do not use direct water stream. May spread fire. Move container from fire area if this is possible without hazard. Use water spray to cool fire-exposed containers and fire-affected zone until fire is out.
Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). Avoid contact with this material during fire fighting operations. If contact is likely, change to full chemical resistant fire fighting clothing with self-contained breathing apparatus. If this is not available, wear full chemical resistant clothing with self-contained breathing apparatus and fight fire from a remote location. For protective equipment in post-fire or non-fire clean-up situations, refer to the relevant sections.

Unusual Fire and Explosion Hazards: Product reacts with water. Reaction may produce heat and/or gases. This reaction may be violent. Container may rupture from gas generation in a fire situation. Vaporizes quickly at room temperature. Vapors are heavier than air and may travel a long distance and accumulate in low lying areas. Dense smoke is emitted when burned without sufficient oxygen.

Hazardous Combustion Products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Nitrogen oxides. Isocyanates. Hydrogen fluoride. Hydrogen cyanide. Carbon monoxide. Carbon dioxide.

6. Accidental Release Measures

Steps to be Taken if Material is Released or Spilled: Contain spilled material if possible. Absorb with materials such as: Sawdust. Vermiculite. Dirt. Sand. Clay. Cob grit. Milsorb®. Do NOT use absorbent materials such as: Cement powder (Note: may generate heat). Collect in suitable and properly labeled open containers. Do not place in sealed containers. Suitable containers include: Metal drums. Plastic drums. Polylined fiber pacs. Wash the spill site with large quantities of water. Attempt to neutralize by adding suitable decontaminant solution:
- Formulation 1: sodium carbonate 5 - 10%; liquid detergent 0.2 - 2%; water to make up to 100%,
- OR Formulation 2: concentrated ammonia solution 3 - 8%; liquid detergent 0.2 - 2%; water to make up to 100%. If ammonia is used, use good ventilation to prevent vapor exposure. Contact Dow for clean-up assistance. See Section 13, Disposal Considerations, for additional information.

Personal Precautions: Isolate area. Keep personnel out of low areas. Keep upwind of spill. Ventilate area of leak or spill. Keep unnecessary and unprotected personnel from entering the area. If available, use foam to smother or suppress. Refer to Section 7, Handling, for additional precautionary measures. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection. See Section 10 for more specific information.

Environmental Precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

7. Handling and Storage

Handling

General Handling: Avoid breathing vapor. Avoid contact with eyes, skin, and clothing. Avoid prolonged or repeated contact with skin. Use with adequate ventilation. Wash thoroughly after handling. Keep container tightly closed. Contents under pressure. Do not puncture or incinerate container. Containers, even those that have been emptied, can contain vapors. Do not cut, drill,
grind, weld, or perform similar operations on or near empty containers. Do not enter confined spaces unless adequately ventilated. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Storage
Store under cover in a dry, clean, cool, well ventilated place away from sunlight. Do not store product contaminated with water to prevent potential hazardous reaction.

Storage Period: 6 Months
Storage temperature: 15 - 27 °C

8. Exposure Controls / Personal Protection

Exposure Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>List</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4’-Methylenediphenyl disocyanate</td>
<td>ACGIH</td>
<td>TWA</td>
<td>0.005 ppm</td>
</tr>
<tr>
<td></td>
<td>OSHA Table Z-1</td>
<td>Ceiling</td>
<td>0.2 mg/m3 0.02 ppm</td>
</tr>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>WEEL</td>
<td>TWA</td>
<td>4,240 mg/m3 1,000 ppm</td>
</tr>
</tbody>
</table>

Personal Protection

Eye/Face Protection: Use chemical goggles. Eye wash fountain should be located in immediate work area.

Skin Protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task. Remove contaminated clothing immediately, wash skin area with soap and water, and launder clothing before reuse or dispose of properly. Items which cannot be decontaminated, such as shoes, belts and watchbands, should be removed and disposed of properly.

Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Butyl rubber. Polyethylene. Chlorinated polyethylene. Ethyl vinyl alcohol laminate (“EVAL”). Examples of acceptable glove barrier materials include: Viton. Neoprene. Natural rubber (“latex”). Polyvinyl chloride (“PVC” or “vinyl”). Nitrile/butadiene rubber (“nitrile” or “NBR”). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Atmospheric levels should be maintained below the exposure guideline. When atmospheric levels may exceed the exposure guideline, use an approved air-purifying respirator equipped with an organic vapor sorbent and a particle filter. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure air-supplying respirator (air line or self-contained breathing apparatus). For
emergency response or for situations where the atmospheric level is unknown, use an approved positive-pressure self-contained breathing apparatus or positive-pressure air line with auxiliary self-contained air supply. The following should be effective types of air-purifying respirators: Organic vapor cartridge with a particulate pre-filter.

Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls

Ventilation: Use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations. Provide general and/or local exhaust ventilation to control airborne levels below the exposure guidelines. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. The odor and irritancy of this material are inadequate to warn of excessive exposure.

9. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Physical State</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Brown</td>
</tr>
<tr>
<td>Odor</td>
<td>Musty</td>
</tr>
<tr>
<td>Flash Point - Closed Cup</td>
<td>Not applicable, Gas</td>
</tr>
<tr>
<td>Flammable Limits In Air</td>
<td>Lower: No test data available, Upper: No test data available</td>
</tr>
<tr>
<td>Autoignition Temperature</td>
<td>No test data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>225 psi @ 54 °C Container is under pressure.</td>
</tr>
<tr>
<td>Boiling Point (760 mmHg)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Vapor Density (air = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Specific Gravity (H2O = 1)</td>
<td>1.02 - 1.04 25 °C/25 °C ASTM D891</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Melting Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Solubility in Water (by weight)</td>
<td>insoluble, reacts, evolution of CO2</td>
</tr>
<tr>
<td>pH</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Kinematic Viscosity</td>
<td>No test data available</td>
</tr>
</tbody>
</table>

10. Stability and Reactivity

Stability/Instability
Stable under recommended storage conditions. See Storage, Section 7.

Conditions to Avoid: Avoid temperatures above 41 °C (106 °F). Avoid temperatures below 20 °C (68 °F). Elevated temperatures can cause container to vent and/or rupture. Exposure to elevated temperatures can cause product to decompose. Generation of gas during decomposition can cause pressure in closed systems. Pressure build-up can be rapid. Avoid moisture. Material reacts slowly with water, releasing carbon dioxide which can cause pressure buildup and rupture of closed containers. Elevated temperatures accelerate this reaction.
Incompatible Materials: Avoid contact with: Acids. Alcohols. Amines. Ammonia. Bases. Metal compounds. Strong oxidizers. Diisocyanates react with many materials and the rate of reaction increases with temperature as well as increased contact; these reactions can become violent. Contact is increased by stirring or if the other material mixes with the diisocyanate. Diisocyanates are not soluble in water and sink to the bottom, but react slowly at the interface. The reaction forms carbon dioxide gas and a layer of solid polyurea. Reaction with water will generate carbon dioxide and heat. Avoid unintended contact with polyols. The reaction of polyols and isocyanates generate heat.

Hazardous Polymerization
Can occur.

Thermal Decomposition
Decomposition products depend upon temperature, air supply and the presence of other materials. Toxic gases are released during decomposition.

11. Toxicological Information

<table>
<thead>
<tr>
<th>Acute Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion</td>
</tr>
<tr>
<td>Single dose oral LD50 has not been determined. Estimated LD50, Rat > 10,000 mg/kg</td>
</tr>
<tr>
<td>Skin Absorption</td>
</tr>
<tr>
<td>The dermal LD50 has not been determined. Estimated LD50, Rabbit > 2,000 mg/kg</td>
</tr>
<tr>
<td>Inhalation</td>
</tr>
<tr>
<td>The LC50 has not been determined. Estimated LC50, Aerosol, Rat > 490 mg/m3</td>
</tr>
</tbody>
</table>

Sensitization
Skin
Skin contact may cause an allergic skin reaction. Animal studies have shown that skin contact with isocyanates may play a role in respiratory sensitization.

Respiratory
May cause allergic respiratory response. MDI concentrations below the exposure guidelines may cause allergic respiratory reactions in individuals already sensitized. Asthma-like symptoms may include coughing, difficult breathing and a feeling of tightness in the chest. Occasionally, breathing difficulties may be life threatening.

Repeated Dose Toxicity
Tissue injury in the upper respiratory tract and lungs has been observed in laboratory animals after repeated excessive exposures to MDI/polymeric MDI aerosols.

Chronic Toxicity and Carcinogenicity
Lung tumors have been observed in laboratory animals exposed to respirable aerosol droplets of MDI/Polymeric MDI (6 mg/m3) for their lifetime. Tumors occurred concurrently with respiratory irritation and lung injury. Current exposure guidelines are expected to protect against these effects reported for MDI.

Developmental Toxicity
In laboratory animals, MDI/polymeric MDI did not cause birth defects; other fetal effects occurred only at high doses which were toxic to the mother. Based on information for component(s):
1,1,1,2-Tetrafluoroethane. Has been toxic to the fetus in lab animals at doses toxic to the mother. Did not cause birth defects in laboratory animals.

Genetic Toxicology
Genetic toxicity data on MDI are inconclusive. MDI was weakly positive in some in vitro studies; other in vitro studies were negative. Animal mutagenicity studies were predominantly negative.

12. Ecological Information

CHEMICAL FATE
Data for Component: Diphenylmethane Diisocyanate, isomers and homologues
Movement & Partitioning
In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Persistence and Degradability
In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

Data for Component: 4,4'-Methylene diphenyl diisocyanate
Movement & Partitioning
In the aquatic and terrestrial environment, movement is expected to be limited by its reaction with water forming predominantly insoluble polyureas.

Persistence and Degradability
In the aquatic and terrestrial environment, material reacts with water forming predominantly insoluble polyureas which appear to be stable. In the atmospheric environment, material is expected to have a short tropospheric half-life, based on calculations and by analogy with related diisocyanates.

Data for Component: 1,1,1,2-Tetrafluoroethane
Movement & Partitioning
Bioconcentration potential is low (BCF less than 100 or log Pow less than 3). Potential for mobility in soil is high (Koc between 50 and 150).

Henry's Law Constant (H): 5.00E-2 atm*m^3/mole; 25 °C Measured
Partition coefficient, n-octanol/water (log Pow): 1.68 Estimated
Partition coefficient, soil organic carbon/water (Koc): 97 Estimated

Persistence and Degradability
1,1,1,2-Tetrafluoroethane (HFC-134a) has a stratospheric ozone depletion potential (ODP) of zero, relative to CFC 12 (ODP=1). Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

Indirect Photodegradation with OH Radicals
PRODUCT NAME: FROTH-PAK(TM) 2.25SR PU Spray Foam System

Rate Constant Atmospheric Half-life Method
6.20E-15 cm3/s 1,700 d Estimated

OECD Biodegradation Tests:
Biodegradation Exposure Time Method
4 % 28 d OECD 301D Test

Theoretical Oxygen Demand: 0.47 mg/mg

ECOTOXICITY

Data for Component: Diphenylmethane Diisocyanate, isomers and homologues

The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50 >100 mg/L in the most sensitive species tested).

Toxicity to Soil Dwelling Organisms
LC50, Earthworm Eisenia foetida, adult, 14 d: > 1,000 mg/kg

Data for Component: 4,4' -Methylene diisocyanate

The measured ecotoxicity is that of the hydrolyzed product, generally under conditions maximizing production of soluble species. Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50 >100 mg/L in the most sensitive species tested).

Toxicity to Soil Dwelling Organisms
LC50, Earthworm Eisenia foetida, adult, 14 d: > 1,000 mg/kg

Data for Component: 1,1,1,2-Tetrafluoroethane

Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, rainbow trout (Oncorhynchus mykiss), static, 96 h: 450 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, water flea Daphnia magna, 48 h, immobilization: 980 mg/l

13. Disposal Considerations

DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER.
All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. DOW HAS NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Incinerator or other thermal destruction device. As a service to its customers, Dow can provide
 names of information resources to help identify waste management companies and other facilities which recycle, reprocess or manage chemicals or plastics, and that manage used drums. Telephone Dow's Customer Information Group at 1-800-258-2436 or 1-989-832-1556 (U.S.), or 1-800-331-6451 (Canada) for further details.

14. Transport Information

DOT Non-Bulk
Proper Shipping Name: COMPRESSED GASES, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 ID Number: UN1956

DOT Bulk
Proper Shipping Name: COMPRESSED GASES, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 ID Number: UN1956

IMDG
Proper Shipping Name: COMPRESSED GASES, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 ID Number: UN1956
EMS Number: F-C,S-V
Marine pollutant.: No

ICAO/IATA
Proper Shipping Name: COMPRESSED GASES, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 ID Number: UN1956
Cargo Packing Instruction: 200
Passenger Packing Instruction: 200

Additional Information

Reportable quantity: 5,556 lb – MDI

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. Regulatory Information

OSHA Hazard Communication Standard
This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.
PRODUCT NAME: FROTH-PAK(TM) 2.25SR PU Spray Foam System
Issue date: 5/22/08
Isocyanate SDS pages 2-13
Polyol SDS pages 14-25

Immediate (Acute) Health Hazard Yes
Delayed (Chronic) Health Hazard Yes
Fire Hazard No
Reactive Hazard No
Sudden Release of Pressure Hazard Yes

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312
This product contains the following substances which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and which are listed in 40 CFR 372.

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4' -Methylene diphenyl diisocyanate</td>
<td>101-68-8</td>
<td>>= 30.0 - <= 60.0 %</td>
</tr>
<tr>
<td>Diphenylmethane Diisocyanate, isomers and homologues</td>
<td>9016-87-9</td>
<td>>= 60.0 - <= 100.0 %</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:
The following product components are cited in the Pennsylvania Hazardous Substance List and/or the Pennsylvania Environmental Substance List, and are present at levels which require reporting.

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS #</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4' -Methylene diphenyl diisocyanate</td>
<td>101-68-8</td>
<td>>= 30.0 - <= 60.0 %</td>
</tr>
</tbody>
</table>

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Special Hazardous Substances List:
To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)
This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

US. Toxic Substances Control Act
All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.30

CEPA - Domestic Substances List (DSL)
All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.
16. Other Information

Recommended Uses and Restrictions
Component(s) for the manufacture of urethane polymers.

Revision
Identification Number: 64144 / 1001 / Issue Date 03/07/2008 / Version: 2.0
Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Not available</td>
</tr>
<tr>
<td>WW</td>
<td>Weight/Weight</td>
</tr>
<tr>
<td>OEL</td>
<td>Occupational Exposure Limit</td>
</tr>
<tr>
<td>STEL</td>
<td>Short Term Exposure Limit</td>
</tr>
<tr>
<td>TWA</td>
<td>Time Weighted Average</td>
</tr>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists, Inc.</td>
</tr>
<tr>
<td>DOW IHG</td>
<td>Dow Industrial Hygiene Guideline</td>
</tr>
<tr>
<td>WEEL</td>
<td>Workplace Environmental Exposure Level</td>
</tr>
<tr>
<td>HAZ DES</td>
<td>Hazard Designation</td>
</tr>
<tr>
<td>Action Level</td>
<td>A value set by OSHA that is lower than the PEL which will trigger the need for activities such as exposure monitoring and medical surveillance if exceeded.</td>
</tr>
</tbody>
</table>

The Dow Chemical Company urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.
The Dow Chemical Company encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name
POLYURETHANE FOAM SYSTEM - POLYOL

COMPANY IDENTIFICATION
The Dow Chemical Company
2030 Willard H. Dow Center
Midland, MI 48674
USA

For MSDS updates and Product Information: 800-258-2436

Customer Information Number: 800-258-2436

EMERGENCY TELEPHONE NUMBER
24-Hour Emergency Contact: 989-636-4400
Local Emergency Contact: 989-636-4400

2. Hazards Identification

Emergency Overview

Color: White
Physical State: Liquid
Odor: Characteristic

Hazards of product:

WARNING! Harmful if swallowed. May cause eye irritation. May be harmful if inhaled. Vapor reduces oxygen available for breathing. May cause anesthetic effects. May cause central nervous system effects; may cause respiratory tract irritation. Isolate area. Keep upwind of spill. Toxic fumes may be released in fire situations. Contents under pressure. Containers are under high pressure. Avoid temperatures above 50°C (122°F).
Potential Health Effects

Eye Contact: May cause moderate eye irritation. May cause slight corneal injury. Vapor of amines may cause swelling of the cornea resulting in visual disturbances such as blurred or hazy vision. Bright lights may appear to be surrounded by halos. Effects may be delayed and typically disappear spontaneously.

Skin Contact: Brief contact may cause slight skin irritation with local redness.

Skin Absorption: Prolonged skin contact is unlikely to result in absorption of harmful amounts.

Inhalation: Prolonged excessive exposure may cause adverse effects. In confined or poorly ventilated areas, vapor can easily accumulate and can cause unconsciousness and death due to displacement of oxygen. May cause respiratory irritation and central nervous system depression. Excessive exposure may increase sensitivity to epihprine and increase myocardial irritability (irregular heartbeats). Symptoms of excessive exposure may be anesthetic or narcotic effects; dizziness and drowsiness may be observed.

Ingestion: Low toxicity if swallowed. Small amounts swallowed incidentally as a result of normal handling operations are not likely to cause injury; however, swallowing larger amounts may cause injury.

Effects of Repeated Exposure: Contains a component which is reported to be a weak organophosphate-type cholinesterase inhibitor. Excessive exposure may produce organophosphate type cholinesterase inhibition. Signs and symptoms of excessive exposure may be headache, dizziness, incoordination, muscle twitching, tremors, nausea, abdominal cramps, diarrhea, sweating, pinpoint pupils, blurred vision, salivation, tearing, tightness in chest, excessive urination, convulsions. Contains component(s) which have been reported to cause effects on the following organs in animals: Liver. Bone marrow. Kidney.

Birth Defects/Developmental Effects: For the component(s) tested: Has been toxic to the fetus in laboratory animals at doses toxic to the mother. For similar material(s): Has been toxic to the fetus in lab animals at doses nontoxic to the mother. Did not cause birth defects in laboratory animals.

Reproductive Effects: For the minor component(s): In laboratory animal studies, effects on reproduction have been seen only at doses that produced significant toxicity to the parent animals.
Eye Contact: Immediately flush eyes with water; remove contact lenses, if present, after the first 5 minutes, then continue flushing eyes for at least 15 minutes. Obtain medical attention without delay, preferably from an ophthalmologist.

Skin Contact: Wash skin with plenty of water.

Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Notes to Physician: Maintain adequate ventilation and oxygenation of the patient. This material is a cholinesterase inhibitor. Treat symptomatically. In case of severe acute poisoning, use antidote immediately after establishing an open airway and respiration. Atropine, only by injection, is the preferable antidote. Oximes, such as 2-PAM/protopam, may be therapeutic if used early; however, use only in conjunction with atropine. Attempt seizure control with diazepam 5-10 mg (adults) intravenous over 2-3 minutes. Repeat every 5-10 minutes as needed. Monitor for hypotension, respiratory depression, and need for intubation. Consider second agent if seizures persist after 30 mg. If seizures persist or recur administer phenobarbital 600-1200 mg (adults) intravenous diluted in 60 ml 0.9% saline given at 25-50 mg/minute. Evaluate for hypoxia, dysrhythmia, electrolyte disturbance, hypoglycemia (treat adults with dextrose 100 mg intravenous). If exposed, plasma and red blood cell cholinesterase tests may indicate significance of exposure (baseline data are useful). Exposure may increase "myocardial irritability". Do not administer sympathomimetic drugs such as epinephrine unless absolutely necessary. Exposure to amine vapors may cause minor transient edema of the corneal epithelium (glauopsia) with blurred vision, blue haze and halos around bright objects. Effects disappear in a few hours and temporarily reduce ability to drive vehicles. No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

5. Fire Fighting Measures

Extinguishing Media: Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Do not use direct water stream. May spread fire. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Use water spray to cool fire exposed containers and fire affected zone until fire is out and danger of reignition has passed. Fight fire from protected location or safe distance. Consider the use of unmanned hose holders or monitor nozzles. Immediately withdraw all personnel from the area in case of rising sound from venting safety device or discoloration of the container. Do not use direct water stream. May spread fire. Move container from fire area if this is possible without hazard. Burning liquids may be moved by flushing with water to protect personnel and minimize property damage.

Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat,
trousers, boots, and gloves). If protective equipment is not available or not used, fight fire from a protected location or safe distance.

Unusual Fire and Explosion Hazards: Container may rupture from gas generation in a fire situation. Violent steam generation or eruption may occur upon application of direct water stream to hot liquids. Blowing agent vaporizes quickly at room temperature.

Hazardous Combustion Products: During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Hydrogen fluoride. Hydrogen chloride. Carbon monoxide. Carbon dioxide.

See Section 9 for related Physical Properties

6. Accidental Release Measures

Steps to be Taken if Material is Released or Spilled: Contain spilled material if possible. Absorb with materials such as: Dirt. Sand. Sawdust. Collect in suitable and properly labeled containers. Wash the spill site with water. See Section 13, Disposal Considerations, for additional information.

Personal Precautions: Isolate area. Only trained and properly protected personnel must be involved in clean-up operations. Keep personnel out of confined or poorly ventilated areas. Keep unnecessary and unprotected personnel from entering the area. Keep upwind of spill. Ventilate area of leak or spill. Confined space entry procedures must be followed before entering the area. Spilled material may cause a slipping hazard. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection. Refer to Section 7, Handling, for additional precautionary measures.

Environmental Precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

7. Handling and Storage

Handling

General Handling: Avoid contact with eyes. Avoid breathing vapor. Wash thoroughly after handling. Keep container closed. Use only with adequate ventilation. Contents under pressure. Do not puncture or incinerate container. Do not enter confined spaces unless adequately ventilated. This material is hygroscopic in nature. See Section 8, EXPOSURE CONTROLS AND PERSONAL PROTECTION.

Other Precautions: Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

Storage

Blowing agent may migrate from product and accumulate in some storage situations. Protect from atmospheric moisture. Store in a dry place. Avoid prolonged exposure to heat and air. See Section 10 for more specific information. Avoid temperatures above 50°C (122°F)

Storage Period: 6 Months

Storage temperature: 25 °C
8. Exposure Controls / Personal Protection

Exposure Limits

<table>
<thead>
<tr>
<th>Component</th>
<th>List</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrafluoroethane</td>
<td>WEEL</td>
<td>TWA</td>
<td>4,240 mg/m3 1,000 ppm</td>
</tr>
</tbody>
</table>

Consult local authorities for recommended exposure limits.

Personal Protection

Eye/Face Protection: Use chemical goggles. If exposure causes eye discomfort, use a full-face respirator.

Skin Protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Hand protection: Use gloves chemically resistant to this material. Examples of preferred glove barrier materials include: Chlorinated polyethylene. Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Polyvinyl alcohol ("PVA"). Styrene/butadiene rubber. Viton. Examples of acceptable glove barrier materials include: Butyl rubber. Natural rubber ("latex"). Polyvinyl chloride ("PVC" or "vinyl"). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, use an approved respirator. When respiratory protection is required, use an approved positive-pressure self-contained breathing apparatus or positive-pressure airline with auxiliary self-contained air supply. For emergency conditions, use an approved positive-pressure self-contained breathing apparatus. In confined or poorly ventilated areas, use an approved self-contained breathing apparatus or positive pressure airline with auxiliary self-contained air supply.

Ingestion: Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls

Ventilation: Use engineering controls to maintain airborne level below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, use only in enclosed systems or with local exhaust ventilation. Exhaust systems should be designed to move the air away from the source of vapor/aerosol generation and people working at this point. Lethal concentrations may exist in areas with poor ventilation.
9. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical State</td>
<td>Liquid</td>
</tr>
<tr>
<td>Color</td>
<td>White</td>
</tr>
<tr>
<td>Odor</td>
<td>Characteristic</td>
</tr>
<tr>
<td>Flash Point - Closed Cup</td>
<td>$> 100^\circ C$ Estimated</td>
</tr>
<tr>
<td>Flammable Limits In Air</td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>No test data available</td>
</tr>
<tr>
<td>Upper</td>
<td>No test data available</td>
</tr>
<tr>
<td>Autoignition Temperature</td>
<td>No test data available</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>2,140 kPa @ 55 °C Supplier</td>
</tr>
<tr>
<td>Boiling Point (760 mmHg)</td>
<td>$> 100^\circ C$ Estimated</td>
</tr>
<tr>
<td>Vapor Density (air = 1)</td>
<td>No test data available</td>
</tr>
<tr>
<td>Specific Gravity (H2O = 1)</td>
<td>1.18 Estimated</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Melting Point</td>
<td>No test data available</td>
</tr>
<tr>
<td>Solubility in Water (by weight)</td>
<td>Slightly soluble</td>
</tr>
<tr>
<td>pH</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

10. Stability and Reactivity

Stability/Instability

Stable under recommended storage conditions. See Storage, Section 7.

Conditions to Avoid: Avoid temperatures above 50°C (122°F). Product can oxidize at elevated temperatures. Generation of gas during decomposition can cause pressure in closed systems. Elevated temperatures can cause pressure buildup in closed containers due to the release of blowing agents.

Incompatible Materials: Avoid contact with: Strong acids. Avoid unintended contact with: Amines. Avoid unintended contact with isocyanates. The reaction of polyols and isocyanates generates heat.

Hazardous Polymerization

Will not occur by itself.

Thermal Decomposition

Decomposition products depend upon temperature, air supply and the presence of other materials. Decomposition products can include and are not limited to: Carbon dioxide. Alcohols. Ethers. Hydrocarbons. Ketones. Polymer fragments. Halogenated hydrocarbons.
11. Toxicological Information

Acute Toxicity
Ingestion
Single dose oral LD50 has not been determined. Estimated LD50, Rat > 2,000 mg/kg

Skin Absorption
The dermal LD50 has not been determined.

Repeated Dose Toxicity
Contains a component which is reported to be a weak organophosphate-type cholinesterase inhibitor. Excessive exposure may produce organophosphate type cholinesterase inhibition. Signs and symptoms of excessive exposure may be headache, dizziness, incoordination, muscle twitching, tremors, nausea, abdominal cramps, diarrhea, sweating, pinpoint pupils, blurred vision, salivation, tearing, tightness in chest, excessive urination, convulsions. Contains component(s) which have been reported to cause effects on the following organs in animals: Liver. Bone marrow. Kidney.

Chronic Toxicity and Carcinogenicity
Contains component(s) which did not cause cancer in laboratory animals.

Developmental Toxicity
For the component(s) tested: Has been toxic to the fetus in laboratory animals at doses toxic to the mother. For similar material(s): Has been toxic to the fetus in lab animals at doses nontoxic to the mother. Did not cause birth defects in laboratory animals.

Reproductive Toxicity
For the minor component(s): In laboratory animal studies, effects on reproduction have been seen only at doses that produced significant toxicity to the parent animals.

Genetic Toxicology
In vitro genetic toxicity studies were negative for component(s) tested. Genetic toxicity studies in animals were negative for component(s) tested.

Component Toxicology - Sucrose, propylene oxide polymer

<table>
<thead>
<tr>
<th>Skin Absorption</th>
<th>Typical for this family of materials. LD50, Rabbit > 5,000 mg/kg</th>
</tr>
</thead>
</table>

Component Toxicology - Tris(1-chloro-2-propyl) phosphate

<table>
<thead>
<tr>
<th>Skin Absorption</th>
<th>LD50, Rabbit > 5,000 mg/kg</th>
</tr>
</thead>
</table>

Component Toxicology - Polyalkylene glycol

<table>
<thead>
<tr>
<th>Skin Absorption</th>
<th>The dermal LD50 has not been determined.</th>
</tr>
</thead>
</table>

Component Toxicology - Tris(dimethylamino)propyl amine

<table>
<thead>
<tr>
<th>Skin Absorption</th>
<th>Estimated LD50, Rabbit > 2,000 mg/kg</th>
</tr>
</thead>
</table>

Component Toxicology - 1,1,1,2-Tetrafluoroethane

<table>
<thead>
<tr>
<th>Inhalation</th>
<th>LC50, 4 h, Rat > 500,000 ppm</th>
</tr>
</thead>
</table>

Component Toxicology - Tris(1-chloro-2-propyl) phosphate

<table>
<thead>
<tr>
<th>Inhalation</th>
<th>LC50, 4 h, Aerosol, Rat > 4.6 mg/l</th>
</tr>
</thead>
</table>

Component Toxicology - Tris(dimethylamino)propyl amine

<table>
<thead>
<tr>
<th>Inhalation</th>
<th>LC50, 4 h, Rat 6.9 mg/l</th>
</tr>
</thead>
</table>
ENVIRONMENTAL FATE
Data for Component: 1,1,1,2-Tetrafluoroethane

Movement & Partitioning
Bioconcentration potential is low (BCF less than 100 or log Pow less than 3). Potential for mobility in soil is high (Koc between 50 and 150).

Henry's Law Constant (H): 5.00E-2 atm·m³/mole; 25 °C Measured
Partition coefficient, n-octanol/water (log Pow): 1.68 Estimated
Partition coefficient, soil organic carbon/water (Koc): 97 Estimated

Persistence and Degradability
1,1,1,2-Tetrafluoroethane (HFC-134a) has a stratospheric ozone depletion potential (ODP) of zero, relative to CFC 12 (ODP=1). Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.20E-15 cm³/s</td>
<td>1,700 d</td>
<td>Estimated</td>
</tr>
</tbody>
</table>

OECD Biodegradation Tests:

<table>
<thead>
<tr>
<th>Biodegradation Exposure Time</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 %</td>
<td>28 d</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 0.47 mg/mg

Data for Component: Sucrose, propylene oxide polymer

Movement & Partitioning
No bioconcentration is expected because of the relatively high water solubility.

Persistence and Degradability
Based on information for a similar material: Material is inherently biodegradable (reaches > 20% biodegradation in OECD test(s) for inherent biodegradability).

Data for Component: Tris(1-chloro-2-propyl) phosphate

Movement & Partitioning
Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Potential for mobility in soil is low (Koc between 500 and 2000).

Henry's Law Constant (H): < 1.35E-5 atm·m³/mole; 25 °C Estimated
Partition coefficient, n-octanol/water (log Pow): 2.59 Measured
Partition coefficient, soil organic carbon/water (Koc): 1,300 Estimated
Bioconcentration Factor (BCF): 0.8 - 4.6; common carp (Cyprinus carpio); Measured

Persistence and Degradability
Material is expected to biodegrade only very slowly (in the environment). Fails to pass OECD/EEC tests for ready biodegradability.

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.47E-11 cm³/s</td>
<td>0.24 d</td>
<td>Estimated</td>
</tr>
</tbody>
</table>

OECD Biodegradation Tests:
PRODUCT NAME: FROTH-PAK™ 2.25SR PU Spray Foam System
Issue date: 5/22/08
Effective date: 5/22/08

Isocyanate SDS pages 2-13
Polyol SDS pages 14-25

Biodegradation Exposure Time Method

<table>
<thead>
<tr>
<th>Theoretical Oxygen Demand</th>
<th>1.17 mg/mg</th>
<th>OECD 301E Test</th>
</tr>
</thead>
</table>

Data for Component: Polyalkylene glycol

Movement & Partitioning
No bioconcentration is expected because of the relatively high molecular weight (MW greater than 1000).

Persistence and Degradability
Based on information for a similar material: Based on stringent OECD test guidelines, this material cannot be considered as readily biodegradable; however, these results do not necessarily mean that the material is not biodegradable under environmental conditions.

Data for Component: Tris(dimethylamino)propyl amine

Movement & Partitioning
Bioconcentration potential is low (BCF < 100 or Log Pow < 3). Expected to be relatively immobile in soil (Koc > 5000). Given its very low Henry's constant, volatilization from natural bodies of water or moist soil is not expected to be an important fate process.

Henry's Law Constant (H): 3.01E-14 atm*m3/mole Estimated
Partition coefficient, n-octanol/water (log Pow): 0.6 Estimated
Partition coefficient, soil organic carbon/water (Koc): > 5,000 Estimated

Persistence and Degradability
Material is not readily biodegradable according to OECD/EC guidelines.

Indirect Photodegradation with OH Radicals

<table>
<thead>
<tr>
<th>Rate Constant</th>
<th>Atmospheric Half-life</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>340E-12 cm3/s</td>
<td>0.031 d</td>
<td>Estimated</td>
</tr>
</tbody>
</table>

Theoretical Oxygen Demand: 3.41 mg/mg

ECOTOXICITY
Data for Component: 1,1,1,2-Tetrafluoroethane
Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, rainbow trout (Oncorhynchus mykiss), static, 96 h: 450 mg/L

Aquatic Invertebrate Acute Toxicity
EC50, water flea Daphnia magna, 48 h, immobilization: 980 mg/L

Data for Component: Sucrose, propylene oxide polymer
Based on information for a similar material: Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 >100 mg/L in the most sensitive species tested).

Data for Component: Tris(1-chloro-2-propyl) phosphate

® (™)*Trademark of The Dow Chemical Company
Material is slightly toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 between 10 and 100 mg/L in the most sensitive species tested).

Fish Acute & Prolonged Toxicity
LC50, bluegill (Lepomis macrochirus), 96 h: 84 mg/l

Aquatic Invertebrate Acute Toxicity
EC50, water flea Daphnia magna, 48 h, immobilization: 63 mg/l

Aquatic Plant Toxicity
EC50, green alga Selenastrum capricornutum, biomass growth inhibition, 96 h: 47 mg/l
EC50, alga Scenedesmus sp., biomass growth inhibition, 72 h: 45 mg/l

Toxicity to Micro-organisms
EC50, OECD 209 Test; activated sludge, respiration inhibition, 3 h: 784 mg/l

Data for Component: **Polyalkylene glycol**
Based on information for a similar material: Material is practically non-toxic to fish on an acute basis (LC50 > 100 mg/L).

Data for Component: **Tris(dimethylamino)propyl amine**
Material is practically non-toxic to fish on an acute basis (LC50 > 100 mg/L).

Fish Acute & Prolonged Toxicity
LC50, Japanese medaka (Oryzias latipes), 48 h: 430 mg/l

13. Disposal Considerations

DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Recycler. Reclaimer. Incinerator or other thermal destruction device. For additional information, refer to: Handling & Storage Information, MSDS Section 7 Stability & Reactivity Information, MSDS Section 10 Regulatory Information, MSDS Section 15

14. Transport Information

TDG Small container
Proper Shipping Name: COMPRESSED GAS, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 **ID Number:** UN1956

TDG Large container
PRODUCT NAME: FROTH-PAK(TM) 2.25SR PU Spray Foam System

Issue date: 5/22/08
Isocyanate SDS pages 2-13
Polyol SDS pages 14-25

Proper Shipping Name: COMPRESSED GAS, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 ID Number: UN1956

IMDG
Proper Shipping Name: COMPRESSED GAS, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 ID Number: UN1956
EMS Number: F-C,S-V

ICAO/IATA
Proper Shipping Name: COMPRESSED GAS, N.O.S.
Technical Name: Fluorinated Hydrocarbons, Nitrogen
Hazard Class: 2.2 ID Number: UN1956
Cargo Packing Instruction: 200
Passenger Packing Instruction: 200

15. Regulatory Information

US. Toxic Substances Control Act
All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.30

CEPA - Domestic Substances List (DSL)
All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.

Hazardous Products Act Information: CPR Compliance
This product has been classified in accordance with the hazard criteria of the Canadian Controlled Products Regulations (CPR) and the MSDS contains all the information required by the CPR.

Hazardous Products Act Information: WHMIS Classification
This product is not a "Controlled Product" under WHMIS.

16. Other Information

Recommended Uses and Restrictions
Polyurethane foam.

Revision
Identification Number: 64142 / 1001 / Issue Date 2008.05.22 / Version: 1.0
Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.
The Dow Chemical Company urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for (M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.