

Calcium Silicate

- Flat and Scored Block
- Pipe Insulation
- Insulation Cement
- Fittings

Calcium silicate insulation is used for high-temperature pipes, equipment, and firestopping applications.

Fiberglass

- Pipe Insulation
- Board Insulation
- Elevated Temperature Blanket
- Duct Wrap
- Batt Insulation

A high surface-area-to-weight ratio makes fiberglass insulation a lightweight, cost-effective solution. Industrial applications include mechanical, HVAC, and metal building insulation.

Spray Foam

- Single-Component

- Double-Component

Single-component spray polyurethane foam is used to fill and seal small cracks and voids. Two-component applicators combine A and B components that expand rapidly to form solid foam, creating a spray pattern to control the application of foam to vertical or horizontal surfaces.

Mineral Wool

```
- Board
- Curtain Wall
- SAFB
Insulation
- Pipe Insulation
```

Highly fire-resistant, mineral wool is widely effective for firestopping purposes. Dl provides the top brands for this type of protection.

Needled Blanket

- High Temperature Blankets

Composed of E-glass fibers, this material is effective in high-temperature situations such as hot industrial equipment insulation and engine exhaust.

Perlite

- Block Insulation
- Pipe Insulation
- Fittings

Because of it's non-corrosive properties and resistance to moisture, perlite protects pipes and equipment while providing excellent insulation. Browse our selection for thermal insulation, fire rating, and noise reduction purposes.

Polystyrene

- Sheets
- Block

Utilized for its exceptional ability to insulate against noise and extreme temperatures, this material is also effective in managing energy and moisture issues that can compromise the performance of walls

PVC

- Jacketing
- Fittings

Our selection of PVC fittings and jacketing systems includes several industry-leading manufacturers. These products are available in high-gloss white and standard colors for both indoor and outdoor use.

Insulation continued

Fabrics

 Cloth- Silicone Cloth
- Neoprene Cloth
- Canvas Cloth
- Teflon Cloth

From versatile fiberglass cloth to engineered wire mesh, Dl's wide assortment of fabrics and cloth offer the greatest benefits in insulating performance.

Cellular Glass

With a high compressive strength and water and fireproofing qualities, cellular glass is environmentally sustainable for use in commercial and industrial applications. This material can be fabricated to all shapes and sizes in our facilities.

Rubber and Polyolephin

- Pipe Insulation
- Sheet Insulation

Rubber insulation is designed for the HVAC and Refrigeration industry. This insulation is highly recommended for condensation control due to its excellent moisture vapor resistance and thermal conductivity. Applications include refrigerant lines, coldwater plumbing and chilled-water systems.

Aluminum and Stainless Steel

- Cut and

Ittings Curled Rolls • Strapping

- Sheets DI offers superior-quality metal jacketing along with banding and fittings for use in a broad range of commercial or industrial applications.

Tapes

- ASJ
- Filament Tape
- PVC Tape
- Double Sided Tape
- Foil Tape
- Self Sealing Tape
- Duct Tape
- Fiberglass Tape
- Vinyl Tape
- FSK

Insulation Tools \& Accessories

- Brushes
- Insulation
- Strapping Tools
- Calipers Toolkits
- Support and
- Insulation Cement
- Insulation Fasteners
- Knives Saddles
- Staple Guns
- Welders and Staples

Adhesives, Coatings, Sealants/Caulks

Complete any industrial or commercial insulation job with Dl's wide selection of application accessories: adhesives, mastics, coatings, sealants and more.

We offer these brands and more:

```
- 3M
- Aeroflex
- Armacell
- Aspen Aerogels
- Certainteed
- Childers
- DOW
- Foster
- Ideal
- IIG
```

- 3M
- Aeroflex
- Armacell
- Aspen Aerogels
- Certainteed
- Childers
- DOW
- Foster
- Ideal
- IIG
- ITW
- Johns Manville
- K-Flex
- Knauf
- Midwest Fastener
- Owens Corning
- Proto
- Roxul
- RPR

Note: This catalog does not represent our full array of product offerings. Please call us for the complete line of safety products available.

Insulation Formula Card

Product Description	K Factor @ $75{ }^{\circ} \mathrm{F}$	$\begin{aligned} & \text { R Value } \\ & \text { per 1" } \\ & \text { Thickness } \end{aligned}$	Normal Density Lb/Cu Ft	Flame Spread	Smoke Developed	Compressive Strength	Temperature Range (${ }^{\circ} \mathrm{F}$) Low High
Calcium Silicate P/C	. 41 @ 2000	2.44 @ 200 ${ }^{\circ}$	14.5	0	0	> 100 PSI	ambient to +1200
Elastomeric Sheet \& Tube	0.25	4.0	3-6	25-1.5" \& under	50-1.5" \& under	n/a	-297 to +220
Fiberglass P/C	0.23	4.35	3	<25	< 50	n/a	0 to +850
Foamglas P/C	0.29	3.45	7.5	0	0	90 PSI	-450 to +900
Phenolic Foam P/C	0.13	7.7	2.2	25	50	17.5-29 PSI	-290 to +250
Mineral Wool P/C	0.23	4.35	8	5	0	n/a	-120 to +1200
Perlite P/C	. 47 @ 100 ${ }^{\circ}$	2.13 @ 100 ${ }^{\circ}$	13	0	0	80 PSI	ambient to +1200
Polyethylene P/C	0.25	4.0	n/a	$25 \leq 1 "$ TK	$50 \leq 1 "$ TK	n/a	-160 to +200
Polyisocyanurate P/C (Trymer 2000)	0.19	5.3	2.05	≤ 25	≤ 450	25-30 PSI	-297 to +300
Polyisocyanurate P/C (Trymer 6000)	0.20	5.0	6	25	450 up to 6" TK	130-140 PSI	-297 to +300
Polystyrene P/C	0.26	3.86	1.6	5	165 up to 4"TK	20 PSI	-297 to +165
Fiberglass Pipe \& Tank	0.27	3.7	3	not rated	not rated	25\# / Ft² @ 10\%	-60 to +650
Mineral Wool Pipe \& Tank	0.27	3.7	6	not rated	not rated	125\# / Ft ${ }^{2}$	up to +900
Tempmat 1" Thick	. 40 @ 300 ${ }^{\circ}$	2.5 @ 300 ${ }^{\circ}$	11	0	0	n/a	up to +1200
Fiberglass Duct Wrap .75\#	0.30	3.4	0.75	25	50	n/a	40 to +250
Fiberglass Duct Wrap 1.0\#	0.27	3.7	1.0	25	50	n/a	40 to +250
Fiberglass Duct Wrap 1.5\#	0.25	4.0	1.5	25	50	n/a	40 to +250
Aspen Aerogel Cryogel	13.8 @ 32°	n/a	8	< 5	20	$\begin{aligned} & 25 \text { PSI @25\% } \\ & \text { strain } \end{aligned}$	-328 to +194
Aspen Aerogel Pyrogel XT	. 16 @ 212°	n/a	11	0	0	25 PSI @25\% strain	up to +1200
Fiberglass TIW Type I	0.27	3.7	1	25	50	n/a	up to +1000
Fiberglass TIW Type II	0.23	4.35	2.4	25	50	n/a	up to +1000
Ceramic Fiber 8.0\#	. 375 @ 200 ${ }^{\circ}$	n/a	8	n/a	n/a	n/a	up to +2300
Fiberglass Board 1.5\#	0.24	4.17	1.5	25	50	n/a	0 to +450
Fiberglass Board 3.0\#	0.23	4.35	3	25	50	25\# / Ft² @ 10\%	0 to +450
Fiberglass Board 6.0\#	0.23	4.35	6	25	50	200\# / Ft² @ 10\%	0 to +450
Mineral Wool Board 4.0\#	0.24	4.17	4	5	0	25\# / Ft^{2}	up to +1200
Mineral Wool Board 6.0\#	0.23	4.35	6	5	0	75\# / Ft ${ }^{2}$	up to +1200
Mineral Wool Board 8.0\#	0.23	4.35	8	5	0	120\#/ Ft^{2}	up to +1200
Mineral Wool Board 10.0\#	0.23	4.35	10	5	0	250\# / Ft ${ }^{2}$	up to +1200
Mineral Wool Board 12.0\#	0.23	4.35	12	5	0	250\# / Ft ${ }^{2}$	up to +1200
Calcium Silicate Block	. 41 @ 200 ${ }^{\circ}$	2.44 @ 200°	14.5	0	0	> 100 PSI	ambient to +1200
Foamglas Block	0.29	3.45	7.5	0	0	90 PSI	-450 to +900
Perlite Block	. 47 @ 100 ${ }^{\circ}$	2.13 @ 100 ${ }^{\circ}$	13	0	0	80 PSI	ambient to +1200
Phenolic Foam Board	0.15	6.67	2.5	≤ 25	≤ 50	17.5-29 PSI	-290 to +250
Polyisocyanurate Board 2.0\#	0.19	5.26	2.05	≤ 25	≤ 450	25-30 PSI	-297 to +300
Styrofoam Panel Core	0.20	5.0	1.5	5	165	20 PSI	max 165
Thermax Board	0.153	6.5	2.0	≤ 25	≤ 450	25 PSI	-100 to +250

Formulas for calculating R,C\&U factors on flat surfaces

$$
\mathrm{R}=\frac{\text { Thickness }}{\mathrm{K}} \quad \mathrm{C}=\frac{\mathrm{K}}{\text { Thickness }}
$$

Actual pipe covering R values must be calculated with equivalent thickness calculation

